ジアリールエテンを用いた高感度カラー線量計

Various types of color dosimeters are conveniently used for estimating absorbed dose in the radiation sterilization of biomedical materials. Diarylethenes with heterocyclic aryl groups are extensively studied for the applications to the optoelectronic devices, such as optical memory media and photoswitching devices because of their thermally irreversible and fatigue-resistant properties. The colors of diarylethenes never fade in the dark conditions. The thermally stable dithienylethen derivatives are applied to sensitive color dosimeters. Upon γ-irradiation, polystyrene films containing diarylethene derivatives, such as 1,2-bis(2-methyl-5-phenyl-3-thienyl)perfluorocyclopentene 1 or 1,2-bis(2,5-dimethyl-3-thienyl)perfluorocyclopentene 2, and fluorescent metal complexes turned blue or red. Even if the absorbed dose was as small as 10 Gy, a clear color change was observed.

Key words: color dosimeter, photochromic diarylethene, radiation sensitivity

1. はじめに

医療器具や血液の放射線滅菌，放射線検査機器や原子力発電施設の放射線漏洩検査，人体への放射線被曝測定などに際し，その放射線線量（どれだけの放射線が当たったかあるいは漏れているか）を検出し評価する必要がある1）。放射線を検出する道具として，最も便利に使われているのは微弱放射線を検出することができる半導体検出器である。これらは装置，道具がなくては放射線を検出することはできない。これに対して，放射線カラー線量計は放射線線量を目視で色の変化のみで観測できるという利点がある。しかし，これまでのカラー線量計は大線量においてのみ変色し，線量の低い領域では変化せず，感度の低いことが欠点とされていた。筆者らは，微量放射線が検出できる高感度放射線カラー線量計を用いて，放射線を検出する目的で，研究を始めている。

2. 放射線カラー線量計の現状

現在までに開発された放射線カラー線量計は大きく分けて2種類ある。一つは放射線照射で発生する酸による色素分子の変色反応を利用したものである。放射線照射により酸を発生させ，その酸により無色から有色に変化する機能性色素を用いたものである。これについては，時田，中澄らの報告がある2）。このカラー線量計は感度が低く，大線量でしか使用できないなどの欠点がある。

他のカラー線量計は，ジアリールエテンを用いた放射線耐性重合を利用したカラー線量計である。これは熱に対して不安定なため，冷蔵庫保存が必要不可欠である。国内で血照射に市販されているのは，このジアリールエテン重合重合反応を利用したフィルムである。常温においても重合が起こるため，常温で保存した場合は1カ月しかだめたくない。微弱放射線に感受性を示すカラー線量計の開発は放射線検査機器を有しているところに限られるため，研究例は非常に少ない。

筆者の所属している旧先端科学研究所はその前身が大阪府立放射線中央研究所である。当研究所では以前から，放射線カラー線量計の研究，開発が行われてきた3）。研究所で開発された放射線カラー線量計の製品は日東電工から「ラドカラー」という名で市販された。他の酸発生剤を用いた放射線カラー線量計は光化学と共同開発したものがあり，「アイケイ（IK）フィルム」の商品名でガンマー線，電子線用化学インジケーターとして発売されている。これは線量域が5.0 kGy以上の大線量用で
ジアリールエタンを用いた高感度カラー線量計

あり、黄色（末照射）から赤（照射）への色変化で照射の有無を確認するものである。

3. フォトクロミックジアリールエタン (DAE) とは

光により変化する化合物の色が変わる現象はフォトクロミズムと呼ばれ、古くから化学者たちの興味をひき、この現象を示す多大な数の化合物が報告されてきた。色とともにさまざまな物性を示す。たとえば、鋼、鋳鉄、酸化、分極、系構造、酸化還元電位なども変化する。光により物性が可逆に変化すれば、さまざまなオプテクレクトロニックスデバイスへの応用が考えられる。このような現象を示す有機分子は、自然界にもまた人工系にも数多く存在し、生物が光を感知する器官には、必ずといってよいほど光を受けて色を変えるこのフォトクロミック分子がある。また、動物の光受容器ロドプシンにはレチン分子が、植物の光受容器フィトクロームにはテトラピロール分子が含まれている。これらの分子は光を受けることにより機能を失い、その結果、生理反応に影響を及ぼし、光がきたことを知らせる役割を担っている。人工系では、20世紀初頭の染料合成の副産物として多くのフォトクロミック分子が偶然に発見され、また合成されてきた。代表的な人工フォトクロミック分子としては、アソベンゼンは1930年代に、スピレゾンビンは1950年代に合成されている。アソベンゼン、スピレゾンビンとともに比較的よく繰り返し耐久性をもち、また合成も容易なことから、現在も光スイッチユニットとして幅広く使用されている。しかし、これらの二つの誘導体は、光生成した異性体が不安定で、暗中においても徐々に異性体へ戻る。そのため、これらを光メモリーあるいは光スイッチに応用することは困難である。フォトニクス用フォトクロミック材料として1980年代に注目されたのは、フリルフィドで紫外光照射により生成するこの分子の着色異性体は熱的に安定で、光メモリーの応用が可能なことから多くの研究開発が進められた。しかし、耐久性の不足からこの分子に対する興味は数年で急速に失われた。

熱安定性と繰り返し耐久性を併せ持つ材料として現在注目されているのは、R1, R2, R3 は有機分子で、R4 は異性体とする。このため光メモリー等フォトニクス分野への応用研究は、ジアリールエタン誘導体を中心に進められている。また、合成が容易なことから、分子系の光スイッチユニットとしての応用も期待されている。最近、人工系により長方形あるいは棒形の形をした有機分子からなるフォトクロミック分子結晶（結晶サイズは10〜100 mm）が、適切な波長の光を当てることにより、可逆かつ高速に屈曲（収縮/伸張）あるいは屈曲することが見いだされ、2007年4月12日付けの英国科学雑誌 Nature で発表された。この光歪素子は、直接線束を必要とせず光を当てただけで遅延操作ができることから、数値領域でメカニカルな仕事をすらマイクロアクチュエーターとして期待が高まっている。

4. ジアリールエタン放射線カラー線量計の特徴

放射線による着色は以下に示すような機構で、ジアリールエタン開閉環体が閉環体に変換することにより起こる、

![放射線線量計の図](image)

フォトクロミック分子は、励起状態において化学結合を組み替えるチャンネルをもつ。光を受けると電子状態が異なり、別の異性体へ変換する。光の代わりに、放射線（γ線、X線、電子線）を用いても同様に励起状態が生成し、色変化が誘導されると考えられる。フォトクロミック分子であるジアリールエタンはその着色状態が安定であり、自然選色しないので放射線の線量計測に用いることができる。さらに、従来の酸発生機構型のカラー線量計は一度のみの使用であるが、フォトクロミック分子であるジアリールエタンは放射線照射により着色しても、可視光照射により元の無色の状態に戻るため、何度も再生用が可能である。フォトクロミック分子の分散状態（単結晶、アモルファス固体あるいは高分子体）を選択することにより、感度の良い系統の構築が期待される。

フォトクロミック化合物であるジアリールエタンを用いた放射線カラー線量計の特徴の一つは、その簡便さである。放射線がどの程度当たっているか、目視ですぐに直接判断できるからである。たとえば、1〜0.1 Gy の微量放射線線量が目視による色の変化ですぐに判断できるならば、人体への放射線被曝線量評価への応用も可能になり、放射線防護の面でも有効である。現在のクラスタ入射法は、後処理線量がわかるので、危険を回避することは不可能である。さらに、ジアリールエタンを用いた放射線カラー線量計のもう一つの特徴はその安定性にある。温度に対しては特別に問題ない。
30℃で1900年である。暗黒中では放射線が当たらない限り、色の変化は全く起こらない。光に対しては紫外線カットフィルターを用い、その影響を除くことができる。10 GYの微弱放射線に感受性を示すサンプルは、液体の際には使用できる。1、0.1 GYの微弱放射線に感受性を示すサンプルは、人体への放射線曝露の評価に使用できると思われる。

ジアリルエタンを用いた高感度放射線カラー・線量計の特徴は
1) 置換基を変えることにより、赤、青、黄などさまざまな色のカラー・線量計が可能。
2) 周囲の状況（湿度、温度、酸素の成分）に対し、安定である。
3) 可逆で再使用可能。
4) 一度のみ使用可能な不可逆タイプも作れる。

5. ジアリルエタンの放射線着色

ジアリルエタンの単結晶、溶液系、バルクアモルファス薄膜。高分子媒体にジアリルエタンを分散させる系について検討を行った。

1) 単結晶系

ホットコムック反射性を示すジアリルエタンである1,2-ピス(2,5-ジメチル-3-チエン)ペルフルオロクロペンテン1、と1,2-ピス(2-メチル-5-フエニル-3-チエン)ペルフルオロクロペンテン2、の単結晶が、放射線照射すると感度良く着色し、その着色状態に可視光を照射するとまたもとの無色の状態に可逆的に戻ることを見ただした。

以下に示すように、1は放射線照射により、無色から赤色に変化した。この吸収極大は535 nmで光照射の場合と同じであった。また、この着色は可視光で退色した。赤色は視覚感度が良く、危険を知らせる際には有効である。

2は放射線照射により、無色から青色に着色した。この吸収極大は575 nmで光照射の場合と同じであった。さらに、この着色は同じく可視光で退色した。

これらについて、結晶状態における系線量依存性を測定したところ、いずれにおいても直線関係が成立した。放射線感受性は1より、2のほうが高かった。厚さ1 mmの2の結晶の吸光度変化は200 GYで0.3となり、感度の良い線量計となることが確認された。

溶液中（ヘキサン、ペンゼン）においても放射線感受性を検討した。ジアリルエタン1、2を含むこれらの溶液は放射線により、効率良く着色することが認められた。照射時間に伴い、直接的に吸収極大も増加した。

2) バルクアモルファス系

結晶状態においてホットコムック反射性を示すアモルファス系についても検討した。5種類のジフェニルエタン、ジベンゾチフェニルエタンのバルクアモルファス膜を作製し、室温において放射線感受性を測定した。その結果、下記の1,3-ジフェニル基をもつジフェニルペルフロオロクロペンテン3のアモルファス薄膜が感度良く着色し、その着色は照射線量に対し、直線的に増加した。

3) 高分子媒体分散系

溶液系での研究を基礎にして、取り扱いの簡便さの点から考えて高分子媒体分散系での検討を行った。高分子媒体として、ポリメチルメタクリレート、ポリスチレン、ポリオレフィン、ポリビニルカルバゾール、ポリカーボネートなどを用いて、その放射線感受性を検討した。ポリメチルメタクリレート、ポリビニルカルバゾールを用いた際には、放射線感受性は小さかったが、ポリスチレンを用いた際には、ジアリルエタンは感度良く着色した。

図1に1,2-ピス(2-メチル-5-フエニル-3-チエン)ペルフルオロクロペンテン2aを含むポリスチレンフィルムに2.0 kGYのγ線照射した際の吸収スペクトルを示す。吸収極大は600 nmで青色に着色した。可視光照射により無色の状態に戻ることが確認された。

図2にこの系の線量依存性を示す。100 GYから3.0 kGYまで直線関係が成立していることが認められる。
ジアリールエチレンを用いた高感度カラー線量計

図1 ジアリールエチレンを含むポリチレンフィルムの放射線着色
全線量: 2.0 kGy, フィルムの膜厚: 0.75 mm

図2 ジアリールエチレン2aを含むポリチレンフィルムの吸光度の線量依存性
線量率: 100 Gy h⁻¹, フィルムの膜厚: 0.75 mm

これらの結果を踏まえて, ポリチレンフィルムを用いた高感度放射線カラー線量計の作製を試みている。膜を厚くすることにより, 放射線感受性をかなり高くすることが可能となる。

次に放射線感受性を向上させることを目指して, ジアリールエチレン2aを含むポリチレンフィルムへの添加物効果を検討した。

吸収線量を増加させる目的で原子番号の大きい金属族の添加を検討した結果, レニウムカルボニル金属錯体

写真1 放射線（γ線）照射による高分子フィルムカラー線量計の着色変化
紫外線カットフィルターでフィルムを覆っている。

を添加した際に放射線感受性は増加した。さらに, 動起エネルギーを効率良くジアリールエチレンへ移動させる目的で種々の増感剤の検討を行った結果を図1に示す。増感剤としてナフタレン, ビフェニルを用いた場合, 放射線感受性は向上した。

放射線着色の機構は次のように考えられる。

放射線ははじめて, 媒体である高分子にエネルギーを
負与し, 高分子は励起状態になる。高分子は励起状態か
らジアリールエチレン開環体へエネルギー移動が起こり,
ジアリールエチレン開環体が生成して着色する。この際, 増感剤が存在すると, 増感剤からジアリールエチレンへの
エネルギー移動が加わり, 着色効率が増加する。

高分子フィルム放射線カラー線量計を用いて放射線照
射により, 着色した例を図1に示す。

10 Gy の放射線照射により, 青く着色していることが
認められる。

表1 増感剤の添加効果

<table>
<thead>
<tr>
<th>Additives</th>
<th>Molecular weights</th>
<th>Absorbance at 600 nm (relartive intensity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td></td>
<td>0.07 (1.0)</td>
</tr>
<tr>
<td>Naphthalene (Naph)</td>
<td>128</td>
<td>0.09 (1.3)</td>
</tr>
<tr>
<td>Biphenyl (Biph)</td>
<td>154</td>
<td>0.12 (1.7)</td>
</tr>
<tr>
<td>Acenaphthene (AN)</td>
<td>154</td>
<td>0.11 (1.6)</td>
</tr>
<tr>
<td>Anthracene (Anth)</td>
<td>178</td>
<td>0.06 (0.9)</td>
</tr>
<tr>
<td>Pyrene (Py)</td>
<td>202</td>
<td>0.06 (0.9)</td>
</tr>
</tbody>
</table>

Irradiation dose: 1,000 Gy, Film thickness: 0.2 mm, Content of additives: 1.5 mol/kg

第85号 (2008) 23
入江せつ子・入江正浩

6. おわりに

フォトクロミック化合物ジアリールエチレンを用いた放射線カラー線量計は現在までのところ、最高感度が10 Gyである。私たちは感度向上を目指して研究を深めたいと考えている。放射性廃棄物の安全性を確認する手段としても、簡便でリアルタイムで放射線の漏洩をチェックする手段として、目視で色の変化のみで放射線照射線量を確認できるカラー線量計。特に1 Gy, 0.1 Gyの微弱放射線に感受性をもつ微弱放射線検出材料としてのカラー線量計の実現が強く望まれている。放射線被曝の危険性から身を守るために必要であり、安全、安心を守るための喫緊の課題である。

謝辞 放射線照射において、小嶋崇夫先生、白石一乗先生から貴重なご助言、ご助力をいただきました。心より感謝いたします。

参考文献

2) 時田澄男, 放射線化学, 76, 29 (2003); 中根博行, 近畿化学協会機能性色素部会第46回例会要旨集 (2000).