LS

SRR EER DIGE X NI = X LADEREE(CAS fo PHITS D
REMESETE DT & Z DIGH

HAEF N Rk SEH &5, BHIE RN, NI EE
mEAs WA 1&15
AR T HigC Rt 1EiE ZEE

This article focuses on evaluating the response of radia-
tion detectors using Particle and Heavy Ion Transport code
System (PHITS). In the PHITS code, track-structure mode
is implemented, which enables the simulation of a high
spatial-resolution radiation track, applicable to non-linear
detector studies. The newly developed electron track struc-
ture mode for arbitrary targets (ETSART) allows the sim-
ulations of atomic interactions e.g., ionization and excita-
tion processes, in various materials. The review presents
the effectiveness of ETSART in analyzing detectors by re-
producing the quenching phenomenon of a phosphor. The
simulation mode in PHITS would promote the theoreti-
cal analysis and development of radiation detectors, with
future plans to expand its application to various detector

types and materials.

Keywords: Particle and Heavy Ion Transport code Sys-
tem, radiation detector, track-structure mode, quenching
effect
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Figure 2. Spatial distribution of excited electrons in SiO, when bombarded with (a) 4 keV electron
beams and (b) 1 MeV proton beams.
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