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Ionizing radiation, ultrasound, and low-temperature
plasma are three physical factors which generate free
radicals in the liquid phase or ultimately produce reactive
oxygen species (ROS) in the cells for their biological
action, as summarized. Radiation can induce ROS pro-
duction in the liquid phase and intracellularly. Ultrasound
also induces ROS in the liquid phase, but this is attributed
to the occurrence of cavitation, which means more than
a specified amount of ultrasound intensity (acoustic
pressure). However, intracellular ROS generation due
to ultrasound is unlikely due to intracellular viscosity.
The low-temperature plasma induces efficiently ROS
in aqueous solutions and subsequently introduces ROS
intracellularly.  Here, the similarities and differences
between radiation chemistry, sonochemistry, and plasma
chemistry are explained. Further, the evidence for free
radical formation in the liquid phase and their role in
the biological effects induced by ionizing radiation,

ultrasound, and low-temperature plasma are discussed.

Keywords: ionizing radiation, low-temperature plasma,
ultrasound, ROS, RNS

Comparison of free radical formation induced by ionizing radi-
ation, low-temperature plasma, and ultrasound

Takashi Koxoo* (Center for Low-temperature Plasma Sciences,
Nagoya University), Jun Kumacar (Institute of Materials
and Systems for Sustainability, Nagoya University),  Keiji
Yasupa (Graduate School of Engineering, Nagoya Univer-
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Figure 1. Free radical generation induced by

Elec-
tromagnetic wave (EM) induces photoelectric

ionizing radiation of photon in water.

effects, Compton scattering, and electron pair

production. Generated electrons and reactive

species form “spur” and diffuse to be homoge-

neous.
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Table 1. Characteristics of ionizing radiation, low-temperature plasma, and ultrasound.
Mode Ionizing radiation Low-temperature plasma Ultrasound
Energy high low very low

(more than 0.1 keV) (~1eV) (less than 107 eV)

Thermal effect very small small large
Mechanical effect no no large
Reactive species ROS, € ROS, RNS, Caq excited gas ROS!RNS!
Effect of gases large effect of oxygen? large? large*
Reaction in gas phase no large no
Distance dependency small large large
Bio-effects of exposed Solution® none or small very large none or small
Effect of shape of container none or small very large very large
DNA damage
Solution DSB<SSB DSB<SSB SSB<DSB®
Cell DSB<SSB’ 0~DSB«SSB SSB<DSB

! Depend on occurrence of inertial cavitation.

2 Oxygen effect and the maximum of oxygen enhancement ratio is 3.

3 RNS formation depends on nitrogen. Formation of ROS is inversely dependent of ionizing energy of gases.

4 Cavitation activity depends on the specific heat ratio of gas, v, which is equal to cp divided by cv.

5 Plasma-treated solution contains plasma-activated medium (PAM), plasma-activated lactate solution (PAL),

plasma-activated water (PAW), etc.

® DSB (double strand break of DNA) is due to mechanical effects of ultrasound, and its yield is superior than SSB

(single strand break).

7 Tonizing radiation induces ca. 1,000 SSB/cell/Gy and ca. 40 DSB/cell/Gy.
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Figure 2. Free radical generation induced by
low-temperature plasma. First, low-temperature
plasma produces ultraviolet(UV), electromag-
netic waves (EM), electrons, meta-stables, and
various reactive oxygen and nitrogen species in
the gas phase. Second, reactive oxygen and ni-
trogen species, and these reaction products are
formed in the liquid phase.
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Cavitation
Bubble Adiabatic
growth collapse
D) o ()3
Ultrasound
Diffusion

5000 K, 100 MPa . _1u=ion
Pyrolysis OH "
H,0 - ?OH"//J

O, O - 0
Ny >N +N T~
Gas phase NO .
NO,
Liquid phase HNO,

Figure 3. Free radical formation induced by
ultrasound is due to inertial cavitation. Chem-
ical reaction occurs in three regions, gas phase
inside the bubble, interfacial region, and liquid
phase.
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Figure 4. Summary of free radical formation induced by ionizing radiation, low-temperature plasma,
and ultrasound. Free radical formation by radiation and plasma is due to ionization and excitation, and
pyrolysis plays an important role in ultrasound. Reactive nitrogen species (RNS) are formed in plasma
and ultrasound, but not in radiation. Free radical formation by plasma depends on distance quantitatively
and qualitatively. Free radical formation by ultrasound is due to the occurrence of inertial cavitation.
Therefore, no free radical was observed under the threshold.
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Today, with the development of microfabrication tech-
nology, the need for structural dimensional control has
come to be emphasized. Organic nanostructures are no
exception. In this paper, we describe in detail the creation
of organic 1D nanostructures: oriented assemblies of
nanowires using energetic charged particles and the eval-
The high electrical

conductivity, which is unique among organic materials,

uation of their electrical properties.

and the charge transport in the nanowire extension direc-
tion are discussed.

Keywords: High-energy charged particles, Nanowire,

Organic device, Charge transport
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Fabrication of highly-oriented organic nanowire structures by
high-energy charged particle beams and investigation of their
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Figure 1. Schematic illustration of organic
nanowire fabrication method via irradiation of
SPNT/STLiP

The nanowire fabrication uses two

high-energy charged particles:
protocol.
types of development methods (wet- and/or
dry-process).  These development methods
form separate nanowire assemblies, correspond-
ing to lying nanowires (atomic force mi-
croscopy (AFM) image) and vertically ori-
ented nanowires (scanning electron microscopy

(SEM) image), respectively.
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129Xe?t B — LR L 72, SR LI &Y
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BRI K D IR L 721, mEZET (~107* Pa)
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(b)
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Figure 2. Schematic illustration of the organic
nanowire devices. (a) The vertical device of ir-
radiated organic films. (b) The lateral device as
the back-gated FET configuration.
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Figure 3. Current-voltage (/-V) characteris-
(@) I-
V curves for non-irradiated and/or various irra-

tics of Cgy nanowire vertical devices.
diation fluences. The inset shows an enlarged

image. (b) Differential conductance at applied
voltage +1 V, relative to the fluence.
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Figure 4. Current-voltage (/-V) characteris-
tics of TiOPc-Cgy hetero-nanowire vertical de-
vices. I-V curves of this system at the fluence
of 5% 10'° cm™2. I-V curves show 20 measure-
ments and their averages.
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Figure 5. Fabrication of horizontally-aligned
Ceo nanowire arrays by high-energy charged
particle irradiation. (a) Schematic illustra-
tion of horizontally-aligned nanowire arrays via
STLiP method. AFM images of horizontally-
aligned nanowire arrays at the fluence of (b)
1x10° em™2, (¢) 1 x 10 cm™2, and (d) 1 X

10" cm™2, respectively.
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Figure 6. Evaluation of electrical conductiv-
ity of horizontally-aligned nanowires. (a) I-V
characteristics (Vg = 0) vs. Vpg, with W =
200 um fixed, at the fluence of 1 X 10° cm2,
1 x 10" cm™2, and 1 x 10" cm™2, respectively.
(b) I-V characteristics (Vg = 0) vs. Vps, at
the fluence of 1 x 10'° cm™2 fixed, with W =
200 wm, 500 wm, and1000 um, respectively. In
both (a) and (b), the figures on insets represent
schematic diagrams of the measurement condi-

tions.
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Figure 7. FET
nanowires. I-V characteristics (Ipsvs.Vps)
at(a) Vg =0to50Vand (b) Vg =0V to-50V
in a step of 10 V. These measurements were
fixed for W = 200 um and f = 1 x 10'° cm™2.
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Figure 8. Non-contact electrical conduction
measurement of nanowires by TRMC method.
Flash—photolysis(FP)-TRMC profiles (dex =
355 nm, photon intensity = 10 mJ cm™) of
Ceo nanowire arrays (red: parallel and blue:
orthogonal). The inset illustration represents
TRMC measurement for horizontally-aligned
nanowire arrays. Polarized microwaves were in-
jected with electric field oscillation directions
parallel or perpendicular along the nanowire ar-
rays. These measurements were fixed for W =
200 wm and f = 1 x 10'° cm™2. ¢ and u repre-
sent charge separation efficiency and carrier mo-
bility, respectively.
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Figure 9. Temperature-dependent electrical
properties of Cg nanowires. (a) Resistance of
Cgo nanowires plotted against temperature (50—
300 K). The nanowires were fabricated by irra-
diation at the fluence of 1x 10'" cm2. The elec-
trode width W = 200 um. (b) Ips vs. Vps plots
at 50 K and 300 K.
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SRR EER DIGE X NI = X LADEREE(CAS fo PHITS D
REMESETE DT & Z DIGH

HAEF N Rk SEH &5, BHIE RN, NI EE
mEAs WA 1&15
AR T HigC Rt 1EiE ZEE

This article focuses on evaluating the response of radia-
tion detectors using Particle and Heavy Ion Transport code
System (PHITS). In the PHITS code, track-structure mode
is implemented, which enables the simulation of a high
spatial-resolution radiation track, applicable to non-linear
detector studies. The newly developed electron track struc-
ture mode for arbitrary targets (ETSART) allows the sim-
ulations of atomic interactions e.g., ionization and excita-
tion processes, in various materials. The review presents
the effectiveness of ETSART in analyzing detectors by re-
producing the quenching phenomenon of a phosphor. The
simulation mode in PHITS would promote the theoreti-
cal analysis and development of radiation detectors, with
future plans to expand its application to various detector

types and materials.

Keywords: Particle and Heavy Ion Transport code Sys-
tem, radiation detector, track-structure mode, quenching
effect
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Development and application of PHITS track structure calcula-
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Figure 2. Spatial distribution of excited electrons in SiO, when bombarded with (a) 4 keV electron
beams and (b) 1 MeV proton beams.
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Figure 4. Example of a calculation model for luminescence intensity. The left panel shows generated

electron distribution from a *He ion beam (50 MeV, low-energy deposition), and the right panel from

a '2C ion beam (50 MeV, high-energy deposition). Small dots mark the generated point of excited

electrons, and colored circle is the emitted luminescence domains.
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Sulfur-sulfur bond plays an important role in tertiary struc-
ture of polypeptides and proteins. Disulfide compounds
(RSSR, R= alkyl and aryl) behave as a radiation protection
agent in biological systems as well as cystine and related
compounds. Pulse radiolysis studies of these compounds
in aqueous solution have been focused on the formation
and decay of the transient disulfide radical anion (RSSR*~)
with a characteristic optical absorption in the visible wave-
length region. Decay processes of radical ions are named
as ‘mesolysis’ where two mechanisms are proposed: Con-
certed and stepwise. In our research, by means of pulsed
electron radiolysis of aromatic disulfides in organic sol-
vents, optical spectroscopic and kinetic approaches were
caried out to unveil the mechanism and the chemical fea-
tures of the mesolysis processes.

Keywords: pulsed electron radiolysis, transient absorp-
tion spectroscopy, diaryldisulfide, quantum chemical cal-

culation
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Mesolytic cleavage of S-S bond in radical anions of aromatic
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Scheme 1. Two mesolysis mechanisms
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Figure 1. Molecular structures and abbrevia-

tions of diaryldisulfides used in this work.
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Figure 2. (a) Absorption spectra upon anneal-

ing from 77 K to 100 K after y-radiolysis of
a MTHEF rigid glass of NpSSNp for 30 min at
77 K. (b) Transient absorption spectra observed
at 50 ns (1), 100 ns (2), 500 ns (3) and 1 ps (4)
after an electron pulse during the pulse radiol-
ysis of NpSSNp in DMF at 293 K. (c) A ref-
erence absorption spectrum of NpS*® in acetoni-
trile. Reprinted with permission from Ref. 34).
Copyright 2024 American Chemical Society.
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ARG 50 ns #2102 BN S 7z (Fig. 2(b)). RIGE (1)
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7 =4 ¥ (NpSSNp*~) & [HE Z41%. NpSSNp*~ D
MZIY (% 293 K T 2.3 x 10° s™! O ETHIET 2 — 17,
450 nm FHEDWKINAS 2.3 x 100 5! DHEEETHRM L 72,
Figure 2(b) 178 3 TH SV ZHHGT 1 ps B DML R
X7 MWL, Fg. 200 WRTF7FAFANT AL
DRI —F L7z, DA EOBIHIK D, NpSSNp O—
FIICHOGIZ & D ZERK L 72 NpSSNp*~ & S-S #&5 & D fif
WAL, F7FAFANLITHALEF7IL VT
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Figure 3. Arrhenius plots of the decay rates,
kq of NpSSNp*~ obtained during the pulse radi-
olysis of NpSSNp in MTHF in the temperature
range of 160 K-293 K. Reprinted with permis-
sion from Ref. 34). Copyright 2024 American
Chemical Society.
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MR CIRE L, 7V =7 Af@HT %2 1T > 7. Figure 3
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KT ¥ v )b AERY 1X NpSSNp*~ D S-S #& £ fid i —
F )V ¥ — (bond dissociation energy, BDERA) % HI\»C
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Figure 4. An energy profile for the S-S bond
cleavage in NpSSNp*~ as a function of the S-S
bond distance, r. The solid curve was drawn by
eq. (3) using BDERA = 6.7 kcal mol™! and 8 =
12.8 nm~!. The data points (e) refer to the cor-
responding stationary-point calculations at the
B3PLYP/6-31G(d) level. Reprinted with per-
mission from Ref. 34). Copyright 2024 Ameri-
can Chemical Society.
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Scheme 2. Plausible mesolytic processes of MeOSSCN radical anion.
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MeOSSCN DI L ANT =AY DAY ¥ 2D K
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Figure 5. Transient absorption spectra at
500 ns upon pulsed-electron radiolysis of
MeOSSOMe (a), NCSSCN (b) and MeOSSCN
(¢) in MTHF at 295 K. Reproduced from
Ref. 38) with permission from the PCCP Owner
Societies.
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Figure 6. Absorption spectral changes upon annealing from 77 K (black line) to 100 K (blue line)

via the intermediate temperature (red line) after y-ray irradiation of MTHF solution of MeOSSOMe (a),
CNCSSCN (c) and MeOSSCN (e) at 77 K. Transient absorption spectra upon pulsed-electron radiolysis
of MTHEF solution of MeOSSOMe at 200 K (b), NCSSCN at 180 K (d) and MeOSSCN (f) at 180 K. The
insets are temporal absorbance change for the corresponding radical anion of MeOSSOMe at 440 nm
(b), CNCSSCN at 490 nm (d) and MeOSSCN at 420 nm (f). Reproduced from Ref. 38) with permission

from the PCCP Owner Societies.

Table 1.

Arrhenius parameters for the mesolysis processes, bond dissociation energies (BDE), the S-S

bond length, and charge distribution on S atoms in XSSX*~. Reproduced from Ref. 38) with permission

from the PCCP Owner Societies.

XSSX*- Afs™! AEfkcal mol™!  BDERA/kcalmol™' S-S Bond Length /nm  Charge Distribution
St S,

MeOSSOMe 1.1x 108 2.6 6.8 0.3053 —-0.400 -0.399

NCSSCN 3.4 %107 1.1 18.8 0.2949 -0.314 -0.311

MeOCSSCN 5.5 % 10'2 4.8 2.52(25.5)¢ 0.3024 -0.319 —-0.397

a) The index of S atom for MeOSSOMe and NCSSCN is alterative, and that for MeOSSCN is as shown in Fig. 1
b) BDE for forming MeOS*®/ NCS™ pair.
¢) BDE for forming MeOS™/ NCS* pair.

Figure 5(a) £ £ O (b) DRINARY FLviFZznzn
AFFTT72ZNFANTICAHALEBINY 7)) 722
WFANTIHANDEDTHS. Figure 5(c) DRI A
7 bV Fig. 5(a) DWINA LY FOVICEBP L TV 3
DT, MeOSSCN 7L A7 =4~ (MeOSSCN *~) D
AV A THRELLEDIEIXA XS 722 VFANT
CAHNTH D ERNTES, DF D MeOSSCN*~ D X
V') > A% Scheme 2 TR L 7230 (6) IZfEH 2 LD
N7z,

X;SSX, @ MTHF {AiRIC 77 K T vy #IS % 7 = —
Vv 7, & MK T X, SSX, @ MTHF /AR ICFE
BRSOV A RS L 7B X N 2 RINA R 7 b V2L
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% Fig. 6 \Z8Y, 77 K TN I N/ZRINA R T kv
BEIRIZONT X SSXo DAYV Y ATHET S 7 =
ZIVF AN T Y HIVEHEBARD RN 2 I A R 7 koL
(Fig. 5 2Z2M) IcBATT 2. 77K TBIllI 7
WA RZ FVIET7 22V F AN TP ANEERD K
JGETERIE, bbb XSSXo DI HNT ZF Ik
2bDTHDHIEEZERT S, FARIKIRIFRTD,
SCHANT A VST 2 NFANT Y H I GELERE
DWINA XY FUAELT 20BN S, I
5DEMD S X1SSX, I AN T =AY (X4SSX,*7)
DAY o AEREIIBRIENTH 5 2 Libo o7,
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Figure 7. Arrhenius plots of the decay rates,
kq, for the radical anion of MeOSSOMe (a),
CNCSSCN (b), and MeOSSCN (c).
duced from Ref. 38) with permission from the
PCCP Owner Societies.
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Figure 1. Plan view of NanoTerasu. The facility is as large as a baseball park, being approximately 250 x 170 m?.

Figure 2. Linear accelerator of NanoTerasu.
(a) Transparent-grid thermal-cathode electron
gun. (b) C-band acceleraion tubes.
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Table 1. Designed and measured beam param-
eters for the storage ring.

Parameter Designed Measured
Horizontal emittance 1.14nmrad 1.14 nm rad”
Vertical emittance 0.0l nmrad 0.02 nmrad
Coupling constant 1 % 2.1 %
Energy spread 0.084 % 0.097 %

*'Designed value
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Figure 3.  Single unit cell of the four-bend achromat lattice of NanoTerasu. The storage ring consists of 16 cells.
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Table 2. Lineup of coalition beamlines.

BL No. Purpose Light source Energy [keV]
07U Soft X-ray electronic structure analysis APPLE-II 0.05-1.0
08U Soft X-ray operando spectroscopy APPLE-II 0.18-2.0
14U Soft X-ray imaging twin helical 0.2-14
08W  Integrated analysis of chemical state and nano/local structure Multipole wiggler 2.1-13
09U X-ray operando spectroscopy In-vacuum plane undulator 5-15
0OwW X-ray multiscale structure analysis Multipole wiggler 4-30
10U X-ray coherent imaging In-vacuum plane undulator 2.1-15
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Table 3. Lineup of public beamlines.
BL No. Purpose Light source Energy [keV]
02U Resonant inelastic X-ray scattering APPLE-II 0.2-2.0
06U Angle-resolved photoemission spectroscopy APPLE-II 0.05-1.0
130 Soft X-ray magnetic circular dichroism four-segmented APPLE-II 0.18-3.0
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